
Humsher: A Predictive Keyboard Operated by Humming

Ondřej Poláček Zdeněk Míkovec Adam J. Sporka Pavel Slavík
Faculty of Electrical Engineering, Czech Technical University in Prague,

Karlovo nám. 13, 12135 Praha 2, Czech Republic

{polacond, xmikovec, sporkaa, slavik}@fel.cvut.cz

ABSTRACT
This paper presents Humsher – a novel text entry method operated
by the non-verbal vocal input, specifically the sound of humming.
The method utilizes an adaptive language model for text
prediction. Four different user interfaces are presented and
compared. Three of them use dynamic layout in which n-grams of
characters are presented to the user to choose from according to
their probability in given context. The last interface utilizes static
layout, in which the characters are displayed alphabetically and a
modified binary search algorithm is used for an efficient selection
of a character. All interfaces were compared and evaluated in a
user study involving 17 able-bodied subjects. Case studies with
four disabled people were also performed in order to validate the
potential of the method for motor-impaired users. The average
speed of the fastest interface was 14 characters per minute, while
the fastest user reached 30 characters per minute. Disabled
participants were able to type at 14 – 22 characters per minute
after seven sessions.

Categories and Subject Descriptors
H.5.2 Information interfaces and presentation: User Interfaces –
Input devices and strategies; Keyboard.

General Terms
Measurement, Performance, Design, Experimentation, Human
Factors.

Keywords
Non-verbal Vocal Interface, Assistive Technology, Text Input,
Predictive Keyboard, Adaptive Language Model

1. INTRODUCTION
Research in the field of text entry methods has been widely
documented for some time. In static desktop environments we can
observe the dominance of QWERTY keyboard which is caused by
its extreme popularity rather than its optimal performance.
Learning a new layout is a tedious process that can take more than
100 hours [1]. However, in special circumstances (e.g., impaired
users, mobile environment) no dominant text entry method can be
identified. This has consequently led to the development of many

non-traditional approaches, where users accept longer learning
time.

The maximum realistic text entry speed can be defined as a speed
of an experienced typist using ten fingers on QWERTY keyboard.
The speed will be approximately 250-400 characters per minute
(CPM) for a professional typist [2]. With this speed achieved
there is a little space for any enhancements like predictive
completion, dynamic layouts, etc. as this will effectively slow
down the type rate.

Physically disabled people usually cannot achieve such high
speed due to their constraints. Their communication with
computers is rather limited to only several distinctive stimuli –
small number of physical buttons, joystick, eye-tracking, features
of the electroencephalographic (EEG) signal etc. This limitation
can be compared to a situation when we are typing with one finger
only on virtual keyboard displayed on a touch screen. There is a
research available [3], showing that typing with one finger on a
touch screen with virtual QWERTY keyboard results in a speed
160 CPM for expert users after 30 minutes training. If we reduce
the size of the virtual keyboard to 7 cm then the speed will drop to
105 CPM. The speed reached by physically disabled people will
be certainly lower. This situation opens a space for research of
new entry methods which will take into account various
limitations of motor impaired users and increase the entry speed.

There is currently a range of assistive tools available to help users
with motor impairments. However, each user may have
significantly different capabilities and preferences according to
the range and degree of their impairment. In case of severe
physical impairment, people usually have to use other interaction
methods to emulate the keyboard. One of the methods that has
been successfully used by people with special needs is the non-
verbal vocal interaction (NVVI) [4]. It can be described as an
interaction modality, in which sounds other than speech are
produced, for example humming [27] or vowels [28].

Our virtual keyboard, Humsher, described in this paper utilizes
vocal gestures, i.e. short melodic and/or rhythmic patterns. The
user can operate the keyboard by humming. Each key is assigned
a pattern. It has been designed for those people with upper-limb
motor impairments such as quadriplegia induced from stroke,
cerebral palsy, brain injury etc. Additionally, users are required to
have healthy vocal folds enough to be able to produce humming.
The main advantages of such interaction are its language
independence and fast and accurate recognition as opposed to
speech [4]. Speech recognition software usually works relatively
well for native speakers; however, the accuracy is much lower for
accented speakers or for people with speech impairment.

1.1 Definitions of Terms
Probably the most common measures of performance of text entry
methods are words per minute (WPM) or characters per minute

(CPM) [29]. Both rates indicate speed of a text entry method.
Relation between them is defined by Equation 1. ISO 9241-4
standardizes WPM rate for keyboards at CPM divided by five, i.e.
one “word” is considered as five characters including spaces.
CPM is defined by equation 2, where |T| is length of written text
in characters and S is time in seconds.

(1)

(2)

A gestures per character (GPC) rate [29] is also used in this
paper for evaluating purposes. Gesture is regarded as an atomic
operation. In the case of the humming input, vocal gestures are
treated as atomic operations. Text entry methods with low GPC
rate are considered as better than those with high rate; however,
other parameters must be taken into account, such as length or
complexity of the vocal gesture. The GPC rate is defined by
Equation 3, where |IS∅| is an input stream which contains all vocal
gestures produced by the user and |T| is length of written text in
characters.

(3)

A sequence of n characters is referred to as n-gram. The n-grams
with length equal to one, two and three character are being called
unigrams, bigrams and trigrams respectively. In the paper the term
n-gram is used for strings of characters of an unspecified length n.

2. RELATED WORK
There is a wide range of text entry methods targeting the motor-
impaired users. We can notice that the methods described in this
section often differ significantly in physical interaction used,
which is determined by specific motor impairment. Each method
is often unique for concrete impairment conditions and thus it
typically makes no sense to compare various methods as they are
not in concurrent position. Several principles can be identified in
the literature – predictive completion, ambiguous keyboards and
scanning.

A text entry method can be accelerated by prediction, when a list
of possible completions is updated with each entered character.
This reduces number of keystrokes per character. The Reactive
Keyboard [5] predicted possible words according to context that
had been already written. An adaptive dictionary-based language
model was used. Predicted candidates could be selected by the
mouse cursor. Expert users of a QWERTY keyboard would be
slowed down, however, such prediction is useful for poor typist or
people with limited movement of upper limbs. Another predictive
keyboard GazeTalk [6] predicted six most probable letters and six
words according to current context. If no prediction was correct,
there was full keyboard available. This virtual keyboard was
controlled by the eye gaze. The keys were activated by dwell-time
selection system [7]. The average typing rate achieved by novice
users was 16 CPM.

Probably the most prevalent ambiguous keyboard is the
commercial T9 system by Tegic Communications [8] that is
widely adopted on mobile phones. The idea behind is simple – the
alphabet is divided into nine groups of characters and then each
group is assigned to one key. The user selects desired characters

by selecting the keys and after a sequence of keys is entered the
word is disambiguated using a dictionary. For its efficiency,
similar ambiguous keyboards were designed for physically
impaired people. Kushler [9] describes an ambiguous keyboard in
which the alphabet was assigned to seven keys and the eighth key
was used as a space key that initiated the disambiguation process.
Tanaka-Ishii [10] published similar system, in which only four
physical keys were used. Besides disambiguation, the text entry
method was capable of predicting words. The average speed of
this method was 70 CPM, achieved after ten sessions by able-
bodied participants. Harbusch [11] presented similar method in
which the whole alphabet was assigned to only three keys and one
key was used for executing special command in a menu.

When the number of stimuli, which can be issued by the user, is
limited to only one or two, using scanning technique is inevitable.
For example in the case of two buttons, the first button can be
pressed repetitively (scanning) to select a key and second button
is used to confirm the selection. When only one button is
available, the keys are selected automatically for a certain amount
of time. After the time expires, next key is selected. The button is
used to confirm the selection again. Keys can be spatially
organized in a matrix and the desired key is then selected by row-
column scanning [12]. Combining linear scanning with an
ambiguous keyboard is a common technique. For example, Kühn
[13] used four-key scanning ambiguous keyboard and achieved 35
CPM without out-of-vocabulary words. Miro [14] limited the
number of keys to only two (keys 'a-m' and 'n-z') and estimated its
entry rate to 50 CPM for an expert user. Beltar [15] used three
keys and developed a virtual mobile keyboard. In QANTI [16]
three keys are mapped to the alphabet. The keyboard is operated
by one switch that is triggered by intentional muscle contractions.
The typing rate ranges from 12.5 to 33 CPM.

An efficient system is Dasher [17], which is based on a
dynamically modified display and adaptive language model [18].
The characters are selected by moving the mouse cursor around
the screen. Continuous "one finger" gestures are used as the input
method. This is a very suitable input method for motor impaired
users, who can operate a pointing device. The writing speed
achieved is approximately 100 CPM with experienced users
reaching up to 170 CPM. For users who have no hand function, a
modification of the Dasher system can be made to allow input via
eye tracking. A longitudinal study [19] found that an average
writing speed of 87 CPM after ten 15-minutes sessions could be
achieved. This speed was a large increase from the initial speed of
just 12.5 CPM. Speech Dasher [20] is another interesting
modification of Dasher. It combines speech input with the
zooming input of Dasher. The system must first recognize a user's
utterance. Errors are then corrected via the zooming input. Expert
users reached a writing speed of approximately 200 CPM.

Sporka et al. [21] describe the NVVI-based method of keyboard
emulation. Each vocal gesture is assigned a specific key on the
keyboard, when a gesture is produced a corresponding key is
emulated. The average reported typing rates varied between 12
and 16 CPM, which was measured in a study with able-bodied
participants. Different assignments of NVVI gestures to keys were
investigated, namely the pitch-to-address, pattern-to-key and
Morse code mappings. In the pitch-to-address mapping, the
keyboard was mapped onto a 4×4×4 matrix, while a sequence of
three tones of specific pitches determined an address in the
matrix. In the pattern-to-key mapping each key was assigned a
specific gesture.

Another keyboard operated by NVVI is CHANTI [25]. It is an
ambiguous keyboard, where the alphabet is split into only three
groups. The keyboard combines philosophy of the ambiguous
keyboard QANTI [16] and humming input. Scanning technique is
replaced by direct selection of a key by vocal gestures. The
keyboard was tested with five severely motor-impaired people, the
speeds ranged from 10 to 15 CPM after 7 sessions.

Additionally, the P300 speller [22] is a method that utilizes the
electroencephalographic (EEG) signal in the human brain to
control a virtual keyboard. The keyboard is a 6x6 matrix
containing alphanumeric characters. The user focuses on a
character and as the character flashes, the brain produces a
stimulus. At least two flashes are needed to input a character.
According to Wang et al. [22], the writing speed achieved is
approximately 7.5 CPM.

3. HUMSHER DESIGN
Our virtual keyboard, Humsher, has been designed for severely
motor-impaired people, who can control it by vocal gestures. It
utilizes the same language model as Dasher [17] (prediction by
partial match; PPM [18]). The model provides n-grams and their
probability, which have been predetermined by a given context.
The model is initialized from a small corpus of English text, but it
adapts as the user types.

3.1 Dynamic Layouts
The interfaces described in this section employ dynamic layout.
The n-grams, which are extracted from the PPM model, are
offered sorted according to their probability. The probability is
predetermined by already written text. Practically it means that
after typing an n-gram, the context is updated, probabilities of
following n-grams are recounted and the layout is displayed
accordingly.

We designed and implemented three different user interfaces
(Direct, Matrix and List) with dynamic layout of characters. Each
interface differs in either vocal gesture set or in mapping of
gestures to actions. The Direct and Matrix interfaces utilize six
vocal gestures as depicted in Fig. 1, whilst the List interface
utilizes only three simple vocal gestures as depicted in Fig. 2. The
vocal gestures are explicitly identified by its length (short/long) or
by its pitch (low/high). In order to distinguish low and high tones
a threshold pitch needs to be adjusted for each user – e.g. the
difference between male and female voice is as much as one or
two octaves. Only two different pitches were chosen as with
increasing number of pitches, more precise intonation is required
and the interaction becomes more error prone.

All three interfaces offer n-grams, containing the characters how
the text might continue, sorted according to the probability. The
n-grams can be unigrams (individual characters) as well as
bigrams, trigrams, etc. The length of n-grams is not limited, only
probability matters. N-grams to display are chosen according to
the following steps:

1. Add all unigrams to the list L that will be displayed.

2. For each n-gram in the list L compute probability of all
(n+1)-grams and add them to the list L if their probability is
higher than a threshold.

3. Repeat step 2 until no n-gram can be added.

4. Sort the list L according to probability of each n-gram.

p
itc

h
pi

tc
h

time

e f time

a b c

threshold
pitch

d

Figure 1. Vocal gestures used in Direct and Matrix interfaces

threshold
pitch

time

p
itc

h

a b c

Figure 2. Vocal gestures used in List and Binary interfaces

3.1.1 Direct interface
The Direct interface (see Fig. 3) allows users to directly choose
from four cells (labeled cell 1 to 4) in the Active column (part A).
These cells contain n-grams that have been determined as the
most probable following characters of the written text. Cells can
be selected by vocal gestures depicted in Fig. 1a-d:

a. two consequent low tones (cell 1),

b. a low tone followed by a high tone (cell 2),

c. a high tone followed by a low tone (cell 3),

d. two consequent high tones (cell 4).

If there is no cell in the Active column that contains the desired
character, the user has to move the leftmost column in the Look
ahead (part B) to the Active column by producing a single short
tone (see Fig. 1e) and keep repeating it until the desired n-gram
appears in one of the cells in Active column. Text, which has been
already written, can be erased by producing a long tone (see Fig.
1f). The longer the user keeps producing the tone the faster are the
characters erased.

3.1.2 Matrix interface
The Matrix interface (see Fig. 4) utilizes the same vocal gestures
as the Direct interface, however, the user interaction is different.
Users are presented with a 4×4 matrix of the most probable n-
grams. Cells in the left column of the matrix contain the highest
probable n-grams, whilst the rightmost cells contain the lowest
probable n-grams.

Selection of the correct cell is accomplished in two steps by
specifying a column and a row. First, the user must select a
column by producing a corresponding vocal gesture (Fig. 1a-d).
The column is then highlighted and the same vocal gestures can
be used to select the desired cell by selecting a row. If a character
does not appear in the matrix, the user has to produce a short tone
(see Fig. 1e) in order to display less probable n-grams. Written
text can be erased by producing a long tone (see Fig. 1f), in the
same manner as in the Direct interface.

part A

cell 1

cell 2

cell 3

cell 4

part B

Figure 3. Direct interface. A– active column, C B –
look ahead matrix

Figure 4. Matrix interface

part A part B

Figure 5. List interface. A – active column, B – look ahead matrix

3.1.3 List interface
The List interface (see Fig. 5) is controlled by just three simple
and easy-to-learn gestures (see Fig. 2). The Active column (part
A) presents the user a list of cells containing the eight most
probable n-grams. The topmost cell is selected. Users can move
the selection up and down by producing a short high or low tone
(see Fig. 2b,c). A long tone (see Fig. 2a) is used to confirm the
desired selection. This interface does not utilize special vocal
gestures to select the next column or erase written text. Instead,
these two functions are always made available by introducing two
special cells Back and Next column at the bottom of the Active
column list.

3.2 Static Layout
Static layout was designed in order to simplify the process of
visual location of desired character. In dynamic layouts users have
to locate a character visually by linear scanning and they cannot
rely on the visual memory. The process of locating correct
character can be tedious for low-probable characters. Moreover,
users sometimes do not notice a correct character and they have to
rotate through the whole list of characters and n-grams once
again. This consequently can lead to users’ frustration. Therefore
we decided to implement a static interface, called Binary
interface, that keeps position of characters and the characters are
sorted alphabetically. Time needed to locate a character is then
modeled by Hick-Hyman law [24] and it is logarithmically
dependent on the length of the alphabet. Locating characters
visually in the static layout is obviously faster than the same task
in dynamic layouts as logarithmic scanning is used instead of
linear.

3.2.1 Binary interface
In the Binary interface (see Fig. 6) the characters are always
displayed in an alphabetic order. Such order gives us an
opportunity to select desired character by binary search algorithm
adopted from basic programming techniques. The algorithm
locates position of a character in the alphabet by splitting it into
two halves and deciding which half is used in the next step. Then
the half is split again and again until the correct character is
found. Each character is located in following number of steps:

(4)

N is size of the alphabet. In our case the algorithm would require
log236 = 6 selections as our alphabet contains 36 symbols. The
user would have to produce six vocal gestures to enter a character.
Therefore the best theoretical GPC rate achieved by the binary
search is equal to six, which is quite high. But what happens if the
alphabet is split according to the probability of characters rather
than into two exact halves? Then a character with high probability
could be located in fewer steps, however, character with low
probability might be located in even more than six steps. The
actual GPC rate measured empirically in a user study presented
later is much lower than six.

1st step

2nd step

3rd step

Figure 6. Binary interface, typing “r” after “Text ent”

The Binary interface is based on modified binary search
algorithm. In each step the alphabet is split into two groups with
balanced probability, i.e. the sum of probabilities of characters in
each group is as close to 0.5 as possible. The boundary between
groups is then computed according to the Equation 5, where k is
the index of boundary character, pi is a probability of character i
and N is a size of the alphabet.

(5)

The Binary interface utilizes only three vocal gestures (see Fig. 2)
as well as the List. Short low tone (Fig. 2b) and short high tone
(Fig. 2c) are used for entering text, while the long tone (Fig 2a) is
used for corrections.

An example of user interaction with the Binary interface is
depicted in Fig. 6. Let us assume that the user has already entered
the text “Text ent” and wants to continue by entering character
“r”. In the first step the alphabet is split into two groups “shift -h”
and “i-space”. The user chooses the second group by producing a
high short tone. In the second step the rest of the alphabet is split
into groups “i-q” and “r-space”. Again the second group is chosen
by the same high short tone. In the last step “r” is the only
character in the first group because of its high probability.
Remaining characters are in the second group. The character “r” is
now entered by low short tone. In this case the character was
selected only in three steps by three short tones.

When comparing Binary interface to the other three interfaces,
several features can be observed:

• User can easily locate desired character as letters are sorted
alphabetically and characters do not change their positions
while entering text.

• Simple vocal gestures are employed (similar to List
interface). Only two gestures are used for entering text and
one for deleting text.

• The Binary interface offers only single characters unlike the
interfaces with dynamic layout. It is not possible to enter
more characters at once.

4. EVALUATION
In order to evaluate the interfaces we conducted two user studies.
The goal of the first one was to compare all four interfaces,
measure their speed and find out user’s opinions on them. In the
second study four disabled participants were recruited to validate
potential of Humsher for motor-impaired users.

4.1 Comparison of interfaces
The aim of the user study was to measure the writing speed of
each interface and subsequently determine which interface was the
most efficient. In the study 17 able-bodied participants (10 men, 7
women, mean age=26, SD=2.1) took part. Each participant
completed four sessions. According to Mahmud et al. [23], four
sessions are needed to minimize the error rate of the NVVI. The
schedules of each session are outlined below:

• Session 1: Participants were trained in producing the
required vocal gestures. After reaching an accuracy of 90%,
they were presented with all interfaces and asked to enter
short phrases with each of them. This session lasted
approximately 30-60 minutes depending on the user’s
abilities.

• Sessions 2 and 3: Participants were asked to enter two
simple phrases using all interfaces. The sessions were
conducted remotely and they lasted roughly 20 minutes.

• Session 4: Participants were asked to enter three phrases
using all interfaces. The session was conducted remotely and
it lasted roughly 30 minutes. Objective data from this session
were collected.

After the last session each participant performed a subjective
evaluation of each interface by means of remote interview. The
participants received approximately 24 hours rest between the
sessions. In order to minimize the learning effect, the sequence of
interfaces was counterbalanced. Objective results (CPM, GPC rate
and number of corrections) are shown in Table 1.

Table 1. Means and standard deviations (SD) of the typing rate
(CPM), vocal gesture per character (GPC) rate and total number

of corrections.

Interface CPM GPC Corrections
 Mean SD Mean SD Mean SD

Direct 14.4 2.8 1.8 0.23 13.0 11.0
Matrix 11.8 2.1 1.9 0.32 16.1 14.6

List 13.0 3.2 3.5 0.58 6.4 6.6
Binary 11.7 1.8 3.4 0.18 14.5 8.5

The ANOVA test and Scheffé’s method [26] were used to find
statistically significant differences in mean quantities among
interfaces. When comparing mean CPM rates, the Direct interface
was significantly faster (F(3,67) = 4.20, p < .01) than the Matrix
interface and it was also significantly faster than the Binary
interface. Other differences in speed were not significant.

In the case of List and Binary interfaces, the users had to produce
significantly more (F(3,67)= 107.7, p < .01) vocal gestures per
character than Direct and Matrix interfaces. This corresponds to
number of vocal gestures used in the interfaces. Direct and Matrix
interfaces utilize six complex gestures (see Fig. 1), while the other
interfaces only three simple gestures (see Fig. 2). As mentioned in
section 3.2.1, theoretical GPC rate for standard binary search is 6,
when the alphabet contains 36 symbols. By modifying the binary
search, we succeeded to reduce the GPC rate to 3.4 empirically
measured in the user study.

After the last session, participants were asked to comment on the
interfaces. The Direct interface was mostly perceived as accurate
and fast. The Matrix interface was in many cases perceived as
fastest among all interfaces, although it was slower than Direct
and List interfaces. Additionally, the List interface, which is not
the slowest, was reported as the slowest. The List interface was
also reported as cumbersome – some participants complained that
it was not transparent enough and the navigation was tedious.
This is probably due to the high number of cells in columns,
which makes the visual searching more difficult. The Binary
interface was found easy and fast by most participants, although it
was the slowest one. The participants appreciated static layout of
the interface, however, eight participants complained about the
fact that only one character can be entered at one time and the
method does not offer n-grams as the dynamic layout interfaces.
The participants also made positive comments on simplicity of
vocal gestures used to control the interface. Although there were
no significant differences in objective data between List and
Binary interfaces, participants strongly preferred the Binary one.

We identified two main searching strategies employed by
participants when using Direct and List interfaces. Some of them
visually scanned only the first column (Active column, see Fig. 3
and 4). When searched character was not found in this column,
they moved forward and scanned the first column again. Some of
them also reported that the Look ahead matrix is redundant and
confusing. The other participants visually scanned all cells in
Active column and Look ahead matrix. When searched character
was not found, they moved forward and scanned the last column.
They reported that this strategy allows them to plan vocal gestures
in advance, which they found faster.

Ten participants reported fatigue of vocal folds during the
experiment, which they mostly compensated for by lowering their
pitch and dropping their voice.

Table 2. Performance of expert users

Interface Expert 1 Expert 2 Expert 3
 CPM GPC corr CPM GPC corr CPM GPC corr

Direct 29 1.5 1 24 1.7 8 30 1.5 2
Matrix 23 1.6 3 20 1.9 15 23 1.5 2

List 25 2.8 0 17 3.4 4 26 2.9 1
Binary 23 3.6 1 16 3.6 23 20 3.2 10

4.1.1 Typing rate of expert users
Learning a new text entry method is always a long-term process.
The study presented results of novice users, who were given only
necessary amount of training. In order to determine possible upper
limit of performance of all Humsher interfaces, three experienced
NVVI users were given 4-6 hours of training. The typing rate was
recorded after their performance did not improve significantly.
Table 2 summarizes CPM, GPC rates and number of corrections
for each interface. The speed varied between 16 and 30 CPM.

Expert 1 and 3 preferred the Direct, while expert 2 preferred
Matrix interface.

4.2 Case studies with disabled people
The goal of the study was to find out whether Humsher can serve
as an assistive tool for motor-impaired people. Four people were
recruited in cooperation with local non-profit associations. The
study was longitudinal, it was organized in seven sessions and
each session lasted 30-60 minutes. First, the participants were
asked to use the Binary interface because of its simple vocal
gestures. Then they were asked to learn more complicated
gestures and use the Direct interface, because it was the fastest
one. The rough schedules of each session are outlined below:

• Session 1: The participants were asked to describe how they
use ICT and how they enter text. Then they were trained in
producing vocal gestures starting with the easiest ones (see
Fig. 2). Binary interface was presented and the participants
were asked to enter a phrase.

• Session 2: Participants trained more complicated vocal
gestures (see Fig.1) until required accuracy was achieved.
Then the Direct interface was presented to them and they
were asked to enter a few phrases.

• Session 3 – 7: Participants were asked to enter phrases using
the Direct interface. On the last day the participant were
asked to describe experience using the interfaces.

While training the vocal gestures, the thresholds for low/high and
short/long tones were personalized for each user. Two users with
speech impairments were not able to consciously alter pitch of
their tone, therefore a new gestures were designed especially for
them.

4.2.1 Participant 1
The participant was 30 year old IT specialist in a small company,
quadriplegic since birth. Due to privacy protection, he only
participated in the study remotely. We conducted interviews with
him via telephone and e-mail.

He uses a mouth stick to operate his PC (keyboard and mouse).
Apart from the Sticky Keys tool available in Microsoft Windows
he uses no other assistive technology. He uses various system
administration tools, word processors, graphic and sound editors
and he feels no disadvantage in comparison with other users.

He found the Direct interface precise and pleasant to use. Overall,
he said he felt in control when using the tool. “The system
allowed me to write whatever I wanted. I was not forced into any
options.” He used the word “intelligent” to describe the suggested
options provided by the tool when typing text. He achieved a
mean type rate of 22 CPM. He reported, however, that his current
text entry rate achieved by the mouth stick is higher.

4.2.2 Participant 2
Another disabled participant was 19 years old, quadriplegic since
an accident about 3 years ago. He is a high-school student who
uses computer to access study materials, talk with his friends over
text media (especially e-mails), make telephone calls and watch
movies. He spends typically 2 to 4 hours using his laptop
equipped with NaturalPoint SmartNav4 head motion tracker and
Click-N-Type keyboard emulation software. However, he is able
to use the head motion tracking system only for 2-4 hours and
then he gets too tired. He had a previous experience with another
NVVI based interface for entering text.

When working with Binary interface, his mean type rate was 12
CPM. After switching to Direct interface, the type rate increased
to 21 CPM. Although he was almost two times faster with the
Direct interface, he reported that the Binary interface was quicker
and more responsive (“I like that it is fast. I can see it all in front
of me and I know exactly what to do next.”). He felt more in
control than when using the Direct interface (“I am a bit lost when
using the Direct interface as I sometimes do not notice the right
option.”). The participant considered our method similar in speed
to his current assistive technology and he would use it as an
alternative solution when his head gets too tired.

4.2.3 Participant 3
The participant was a 58 year old woman with cerebral palsy. All
her limbs are affected by the disease. She can sit on a chair, but
she needs a wheelchair for movement. She has a lot of
unintentional movements in her arms. Her voice is also affected.
She speaks slowly and she does not articulate properly. Her health
state is slowly but steadily declining.

She used to work as an office staff in a non-profit organization,
but she is unemployed for one year now. She used to type on a
typewriter and a computer keyboard. However, now her
performance decreases and she types very slowly on a keyboard.
The only assistive technology that she uses is a trackball to
control the mouse pointer. She also tried speech recognition, but it
did not work for her at all.

Figure 7. Modified List interface

She spent first and second sessions trying to learn voice gestures
for the Binary interface. However, after two sessions she could
hardly write a phrase. She was not able to effectively alter pitch of
her tone, which led to many corrections. Therefore the vocal
gestures were changed to short, medium long and long tone. Then
she was asked to use it for another two sessions and she reached 8
CPM.

As the participant was unable to produce more complicated
gestures, we modified the List interface (see Fig. 7) for use with
the new gesture set. Short tone was used to move cursor in the
Active column down, medium tone to submit selected n-gram and
long tone for correction. She used this interface for remaining
three sessions and reached 15 CPM.

The participant reported that the speed of the modified List
interface is similar to her current typing rate and she was
interested in purchasing it as a product. She also made comments
on speech recognition (“This is much better than speech for me”).

She reported that after one hour of humming her vocal chords
were not tired at all.

4.2.4 Participant 4
The participant was 51 years old, quadriplegic since an accident
about 22 years ago. His legs and right arm are paralyzed. He can
use his left arm to operate wheelchair, however, fine motoric of
his left hand is reduced. His vocal chords and neck muscles are
also slightly affected.

Before the accident he used to work as a machine engineer. Since
that he is unemployed. He has never worked with computers, but
he regularly uses cell phone for couple of years, mainly for calling
and writing short text messages. However, composing message is
a tedious process for him.

The participant started with Binary interface and used it for two
sessions. He experienced similar problems to participant 3. As he
was not able to produce low and high tone properly, his
performance was about 1 CPM with a lot of corrections. In the
third session he switched to the modified List interface (see Fig.
7) as participant 3 and his performance increased rapidly with
minimum mistakes. Using this interface and the vocal gestures
based on length he reached type rate of 14 CPM.

He stated that typing text with Humsher is faster and better than
typing on his cell phone. Generally he was pleased with the
modified List interface. However, his vocal chords got tired after
40 minutes of humming.

5. CONCLUSION
This paper has presented and evaluated four interfaces of
Humsher – an adaptive virtual keyboard operated by humming.
Three of them (Direct, Matrix and List) used dynamic layout, in
which characters were sorted according to its probability. The
layout was updated after entering a character. The last interface
(Binary) used a static layout, in which characters were displayed
alphabetically and did not change their position. A character was
selected by modified binary search algorithm that took into
account probability of each character.

Most novice users preferred the Binary interface, even though it
was not the fastest one. They appreciated mostly the static layout
of characters and simple vocal gestures used to control the
interface. On the other hand expert users preferred interfaces with
dynamic layouts. Interfaces with dynamic layout were perceived
worse, however, users appreciated that sometimes several
characters could be entered together. The Direct interface was the
fastest one with average speed 14.4 CPM achieved by novice and
28 CPM by expert users.

Acceptance of our tool for the target group was verified by the
inclusion of four motor-impaired participants. Two of them could
not use speech recognition software as their speech was also
impaired. Cases of all disabled participants are described
separately in a longitudinal and qualitative study. Their speed
achieved after seven sessions varied between 14 and 22 CPM.

While some techniques, such as Dasher [19], offer their users type
rates up to 100 CPM, they may not be used by people with severe
motor impairments without expensive hardware, such as eye
trackers. Our method requires no additional hardware to a
standard PC and performs better than the NVVI Keyboard [21]
and CHANTI [25] methods which have the identical hardware
requirements and for which a similar performance is reported: 16

CPM for NVVI Keyboard, 15 CPM for CHANTI, and 22 CPM
for Humsher.

6. ACKNOWLEDGMENTS
This research has been supported by the MSMT research program
MSM 6840770014 and the Veritas project (IST-247765).

7. REFERENCES
[1] Silfverberg, M. 2007. Historical Overview of Consumer Text

Entry Technologies. In Text Entry Systems: Mobility,
Accessibility, Universality, I. S. MacKenzie and K.Tanaka-
Ishii (eds.). Morgan Kaufmann, 3-26.

[2] West, L. J. 1998. The Standard and Dvorak Keyboards
Revisited: Direct Measures of Speed.
http://samoa.santafe.edu/media/workingpapers/98-05-
041.pdf, Technical report, Santa Fe Institute.

[3] Sears, A., Revis D., Swatski, J., Crittenden, R., Shneiderman,
B. 1993. Investigating touchscreen typing: the effect of
keyboard size on typing speed. In J. Behaviour and
Information Technology, vol. 12, 17-22.

[4] Igarashi, T., Hughes, J F. 2001. Voice as sound: using non-
verbal voice input for interactive control. In Proceedings of
UIST ’01, ACM Press, 155-156.

[5] Darragh, J. J., Witten, I. H., James, M. L. 1990. The Reactive
Keyboard: A Predictive Typing Aid. Computer Journal, vol.
23, IEEE Press, 41-49.

[6] Hansen, J., Johansen, A., Hansen, D., Itoh, K., Mashino, S.
2003. Language technology in a predictive, restricted on-
screen keyboard with ambiguous layout for severely disabled
people. In Proceedings of EACL Workshop on Language
Modeling for Text Entry Methods.

[7] Jacob, R. J. K. 1990. What you look at is what you get: eye
movement-based interaction techniques. In Proceedings of
CHI’90, ACM Press, 11-18.

[8] Grover, D. L., King, M. T., Kushler, C. A. 1998. Reduced
keyboard disambiguating computer, Technical report, US
Patent Publication.

[9] Kushler, C. 1998. AAC: Using a Reduced Keyboard.

[10] Tanaka-Ishii, K., Inutsuka, Y., Takeichi, M. 2002. Entering
text with a four-button device. In Proceedings of the 19th
International Conference on Computational Linguistics,
Association for Computational Linguistics, 1-7.

[11] Harbusch, K., Kühn, M. 2003. Towards an adaptive
communication aid with text input from ambiguous
keyboards. In: Proceedings of EACL’03, Association for
Computational Linguistics, 207-210.

[12] Simpson, R., Koester, H. 1999. Adaptive one-switch row-
column scanning. In IEEE Transactions on Rehabilitation
Engineering, vol. 7, no. 4, IEEE Press, 464-473.

[13] Kühn, M., Garbe, J. 2001. Predictive and highly ambiguous
typing for a severely speech and motion impaired user. In
Proceedings of 1st International Universal Access in Human-
Computer Interaction Conference, UAHCI ’01.

[14] Miro, J., Bernabeu, P. 2008. Text entry system based on a
minimal scan matrix for severely physically handicapped
people. In Computers Helping People with Special Needs,
LNCS 5105, Springer, Heidelberg, 1216-1219.

[15] Belatar, M., Poirier, F. 2008. Text entry for mobile devices
and users with severe motor impairments: handiglyph, a
primitive shapes based onscreen keyboard. In Proceedings of
ASSETS ’08, ACM Press, 209-216.

[16] Felzer, T., MacKenzie, I., Beckerle, P., Rinderknecht, S.
2010. Qanti: A software tool for quick ambiguous non-
standard text input. In Computers Helping People with
Special Needs, LNCS 6180, Springer, 128-135.

[17] Ward, D. J., Blackwell, A. F., MacKay, D. J. C. 2000.
Dasher – a data entry interface using continuous gestures and
language models. In Proc. of UIST ’00, ACM, 129-137.

[18] Teahan, W. 1995. Probability estimation for PPM. In:
Proceedings of the New Zealand Computer Science Research
Students’ Conference.

[19] Tuisku, O., Majaranta, P., Isokoski, P., Räihä, K. J. 2008.
Now Dasher! dash away!: Longitudinal study of fast text
entry by eye gaze. In Proceedings of the 2008 symposium on
Eye tracking research and applications, ETRA ’08, ACM
Press, 19-26.

[20] Vertanen, K., MacKay, D. J. 2010. Speech dasher: fast
writing using speech and gaze. In Proceedings of CHI ’10,
ACM Press, 595-598.

[21] Sporka, A. J., Kurniawan, S. H., Slavík, P. 2006. Non-speech
operated emulation of keyboard. In: Clarkson, J., Langdon,
P., and Robinson, P. (eds.) Designing Accessible
Technology, Springer, London, 145-154.

[22] Wang, C., Guan, C., Zhang, H. 2005. P300 brain-computer
interface design for communication and control applications.
In: Proceedings of the 27th Annual International Conference
of the Engineering in Medicine and Biology Society, IEEE-
EMBS’05, 5400-5403.

[23] Mahmud, M., Sporka, A. J., Kurniawan, S. H., Slavik, P.
2007. A Comparative Longitudinal Study of Non-verbal
Mouse Pointer, In Proceedings of INTERACT 2007,
Springer, Heidelberg, 489-502.

[24] Hyman, R. 1953. Stimulus Information as a Determinant of
Reaction Time. Journal of Experimental Psychology, vol. 45,
188-196.

[25] Sporka, A. J., Felzer, T., Kurniawan, S.H., Polacek, O.,
Haiduk, P., MacKenzie, I.S. 2011. CHANTI: Predictive Text
Entry Using Non-verbal Vocal Input. In proceedings of
CHI’11, ACM Press., 2463-2472.

[26] Maxwell, S.E., Delaney, H.D. 2004. Designing Experiments
and Analyzing Data: A Model Comparison, ISBN
0805837183, Lawrence Erlbaum Associates, 217–218.

[27] Sporka, A.J., Kurniawan, S. H., Slavik, P. 2004. Whistling
user interface (u3i) In 8th ERCIM International Workshop
“User Interfaces For All”, LCNS 3196, Springer, 472-478.

[28] Harada, S., Landay, J.A., Malkin, J., Li, X. and Bilmes, J.A.
2006. The Vocal Joystick: Evaluation of voice-based cursor
control techniques. Proceedings of ASSETS '06,ACM Press,
197-204.

[29] Wobbrock, J.O. 2007. Measures of text entry performance.
In Text Entry Systems: Mobility, Accessibility, Universality,
I. S. MacKenzie and K.Tanaka-Ishii (eds.). Morgan
Kaufmann, 47-74.

